UWAGA NA BLACK WEEKS! Kod rabatowy "EDUKAMP" - obniży wartość koszyka o 5% Darmowa wysyłka od 99zł Naklejka z imieniem dziecka i prawo jazdy gratis

Czyszczenie danych w Pythonie. Receptury

Symbol: 9788328380295
Dostępność: 2 szt.
67.25
63.89 cena z kodem: EDUKAMP
szt.
Zamówienia telefoniczne: 501-031-535 Zostaw telefon
Cena przesyłki:
8.49
  • Odbiór osobisty Kraków ul. Ofiar Dąbia 4 0
  • Odbiór osobisty Kraków ul. Ofiar Dąbia 4 0
  • Orlen paczka 8.49
  • Paczkomaty 24/7 9.99
  • Kurier DPD 12.9
  • Paczkomaty 24/7 (POBRANIE) 14.99
  • Kurier DPD (POBRANIE) 14.99
  • Kurier DHL 18
  • Kurier DHL (POBRANIE) 21
EAN:
9788328380295
Przetwarzanie dużych ilości danych daje wiedzę, która leży u podstaw
istotnych decyzji podejmowanych przez organizację. Pozwala to na uzyskiwanie
znakomitych efektów: techniki wydobywania wiedzy z danych stają się coraz
bardziej wyrafinowane. Podstawowym warunkiem sukcesu jest uzyskanie odpowiedniej
jakości danych. Wykorzystanie niespójnych i niepełnych informacji prowadzi do
podejmowania błędnych decyzji. Konsekwencją mogą być straty finansowe,
stwarzanie konkretnych zagrożeń czy uszczerbek na wizerunku. A zatem
oczyszczanie jest wyjątkowo ważną częścią analizy danych.
Ta książka jest
praktycznym zbiorem gotowych do użycia receptur, podanych tak, aby maksymalnie
ułatwić proces przygotowania danych do analizy. Omówiono tu takie kwestie
dotyczące danych jak importowanie, ocena ich jakości, uzupełnianie braków,
porządkowanie i agregacja, a także przekształcanie. Poza zwięzłym omówieniem
tych zadań zaprezentowano najskuteczniejsze techniki ich wykonywania za pomocą
różnych narzędzi: Pandas, NumPy, Matplotlib czy SciPy. W ramach każdej receptury
wyjaśniono skutki podjętych działań. Cennym uzupełnieniem jest zestaw funkcji i
klas zdefiniowanych przez użytkownika, które służą do automatyzacji oczyszczania
danych. Umożliwiają one też dostrojenie procesu do konkretnych potrzeb.
W
książce znajdziesz receptury, dzięki którym:
- wczytasz i przeanalizujesz
dane z różnych źródeł
- uporządkujesz dane, poprawisz ich błędy i uzupełnisz
braki
- efektywnie skorzystasz z bibliotek Pythona
- zastosujesz
wizualizacje do analizy danych
- napiszesz własne funkcje i klasy do
automatyzacji procesu oczyszczania danych
Prawdziwą wartość mają tylko
oczyszczone i spójne dane!
Parametry:
Wydawnictwo:
Helion
Autor:
Michael Walker
Rok wydania:
2021
Oprawa:
broszurowa
Stron:
328
Nie ma jeszcze komentarzy ani ocen dla tego produktu.
Zadaj pytanie
Podpis:
E-mail:
Zadaj pytanie: