Niniejszy tomik składa się z trzech artykułów, które dotyczą matematyki w czystej formie, czyli arytmetyki i geometrii. Obie te nauki należą do najstarszych i stanowią podwalinę całej dzisiejszej matematyki. Wyrosły one w czasach starożytnych jako odpowiedź na potrzebę stworzenia uniwersalnego języka do opisu spraw związanych z życiem codziennym takich jak na przykład budownictwo świeckie i sakralne (geometria) czy opracowywanie wyników pomiaru kształtów geometrycznych lub handel (arytmetyka). Z biegiem czasu zostały wyabstrahowane z kontekstu zastosowań i stały się same w sobie celem rozważań.
Pierwsza miniatura dotyczy zagadnienia znanego ze szkoły, mianowicie konstrukcyjnego wyznaczania stycznych do okręgu przechodzących przez ustalony punkt znajdujący się na zewnątrz koła wyznaczonego przez ten okrąg. Temat jest omawiany na lekcjach matematyki. Okazuje się jednak, że konstrukcje szkolne to jedynie mała część całego zbioru różnorakich sposobów rozwiązania tego problemu. W artykule przedstawiono aż czternaście konstrukcji, większość wraz z uzasadnieniem ich poprawności. Obok klasycznych konstrukcji platońskich, to znaczy przeprowadzanych z użyciem cyrkla i linijki, znalazły się także takie, które można wykonać przy użyciu samego cyrkla lub samej linijki.
Kolejna miniatura, to arytmetyczna pauza pomiędzy lekcjami geometrii. Traktuje o kongruencjach liczbowych i ich własnościach oraz zastosowaniach do wyznaczania reszt z dzielenia liczb całkowitych przez ustalone liczby naturalne. W przystępny sposób wprowadza język kongruencji, zaczynając od kongruencji o module 10, która ze względu na swoją interpretację związaną z zapisem liczb w systemie dziesiątkowym, świetnie ilustruje ogólne własności. Dodatkowym walorem tego artykułu jest bardzo duża liczba konkretnych przykładów, które pokazują na czym polegają prawidłowości opisane językiem wyrażeń algebraicznych.
Ostatnia miniatura to, jak już wspomnieliśmy, kolejna lekcja geometrii, podobnie jak pierwszy artykuł poszerzająca wiedzę znaną ze szkoły. Dotyczy pojęcia potęgi punktu względem okręgu, które ukryte jest w szkole w twierdzeniu o stycznej i siecznej. W artykule zaprezentowano różne twierdzenia związane z tym pojęciem, a także z pojęciem prostej potęgowej dwóch niewspółśrodkowych okręgów. W miniaturze tej Czytelnik znajdzie również wiele ciekawych zadań wraz z rozwiązaniami oraz kilka zadań do samodzielnego rozwiązania, wśród których najtrudniejsze zostały opatrzone wskazówkami.
Wydawnictwo:
Aksjomat Piotr Nodzyński
Autor:
praca zbiorowa
Rok wydania:
2018
Oprawa:
broszurowa
Stron:
68
Format:
16,5x24 cm
Manufacturer details
ATENEUM M. KOGUT, A. ZEGIEL SPÓŁKA KOMANDYTOWA
ul. Półłanki 12C
30-740 Kraków
Poland
730260740 CerCE|Zgodne z EN-71
[email protected]