No goods

Praktyczne uczenie maszynowe w języku R

The Symbol : 9788375414783
The Availability Of : 0 opak
78.85
74.91 price with code : EDUKAMP
opak
Orders by phone: 501-031-535 Leave your phone
Shipping within : Right away
Shipping price :
The Lack Of
EAN :
9788375414783

Uczenie maszynowe i analiza danych pełnią coraz ważniejszą rolę w tworzeniu wartości dodanej. Uczenie maszynowe pozwala znajdować ukryte w danych zależności, wnosząc nowe pomysły i wiedzę, którą trudno byłoby osiągnąć bez tej zaawansowanej techniki. Książka Praktyczne uczenie maszynowe w języku R to wstępne przygotowanie do pracy z dużymi zbiorami danych w języku R, który jest łatwy w zrozumieniu i został opracowany specjalnie z myślą o analizie statystycznej. Nawet osoby bez doświadczenia w programowaniu mogą skorzystać z tej książki, dowiadując się, w jaki sposób praktyczne zastosowania uczenia maszynowego pozwalają analitykom danych pozyskiwać strate-giczne informacje biznesowe, solidne prognozy i podejmować trafniejsze decyzje. W odróżnieniu od innych książek na ten temat, Praktyczne uczenie maszynowe w języku R oferuje zarówno teoretyczne, jak i techniczne wprowadzenie do uczenia maszynowego. W przykładach i ćwiczeniach wykorzystywany jest język programowania R oraz najnowsze narzędzia analizy danych, co pozwala zacząć pracę bez nadmiernego zagłębiania się w zaawansowaną matematykę. Dzięki tej książce techniki uczenia maszynowego - po-cząwszy od regresji logistycznej po reguły asocjacyjne i analizę skupień - są w zasięgu ręki. Jedyna publikacja, która łączy intuicyjne wprowadzenie do uczenia maszynowego z opisami zastosowań technicznych krok po kroku. Praktyczne uczenie maszynowe w języku R pokaże jak: przyswoić koncepcje różnych typów uczenia maszynowego, odkrywać wzorce ukryte w dużych zbiorach danych, pisać i wykonywać skrypty R za pomocą RStudio, używać języka R w połączeniu z pakietami Tidyverse do zarządzania danymi i ich wizualizacji, stosować podstawowe techniki statystyczne, takie jak regresja logistyczna czy naiwny klasyfikator Bayesa, oceniać i ulepszać modele uczenia maszynowego. DR FRED NWANGANGA jest profesorem uczelni na wydziale Business Analytics w Mendoza College of Business na uniwersytecie Notre Dame, Indiana, USA. Ma ponad 15-letnie doświadczenie w pełnieniu roli lidera technicznego. DR MIKE CHAPPLE jest profesorem uczelni na wydziale Technology, Analytics, and Operations w Mendoza College of Business. Mike jest autorem ponad 25 poczytnych książek i pełni funkcję dyrektora naukowego programu studiów magisterskich z analizy biznesowej.

Parameters :
Wydawnictwo:
APN PROMISE
Autor:
Fred Nwanganga, Mike Chapple
Rok wydania:
2022
Oprawa:
karton
Stron:
458

Manufacturer details

ATENEUM M. KOGUT, A. ZEGIEL SPÓŁKA KOMANDYTOWA
ul. Półłanki 12C
30-740 Kraków
Poland

730260740 CerCE|Zgodne z EN-71
[email protected]

There is currently no comments or ratings for this product.
Ask a question
The Signature Of The :
Email :
Ask a question :